

TECHNICAL INSULATION AND FIREPROOFING

Product catalogue

KNOWLEDGE. EXPERIENCE. CRAFTSMANSHIP.

WWW.TN.RU

About the company	2
Properties of technical insulation and fireproofing by TECHNONICOL Advantages of technical insulation and fireproofing by TECHNONICOL	4
Product catalogue	9
Technical insulation materials Fireproofing materials Components and equipment	9 17 21
Training and design assistance Using technical insulation	28
and fireproofing materials by TECHNONICOL	30
Stress-strain properties of the materials	32
Recommendations	34

About the company

TECHNONICOL is a leading international producer of reliable and efficient building materials and systems. The company offers the market state-of-the-art technologies that combine the advancements of our own Research Centres with cutting-edge global expertise. More than 500 mln people around the world live and work in buildings constructed with the use of TECHNONICOL materials.

69 production sites

21 training centres

700 commercial partners IIn 2003, TECHNONICOL joined the stonewool-based heat-insulation materials market. Since then, aside from becoming a leader in the production of roofing and waterproofing materials, TECHNONICOL has also emerged as one of Russia's largest manufacturers of stonewool-based heat-insulation materials. Above and beyond its superior quality, our heat insulation is distinctive for its broad gradation of technical and physical characteristics, which let the consumer choose the optimal material in terms of price and technical specifications. We have optimised the geography of our manufacturing plants to keep pace with growth in demand on the regional markets. This lets us be flexible and swift in our product deliveries without passing additional transportation costs on to our customers.

Our production capacity and equipment allow us to supply the required volumes of heat-insulation materials for even the largest structures while making made-to-order products that suit the customer's individual needs. The company's manufacturing plants produce not just general-construction heatinsulation and soundproofing materials, but also specialised materials for the fireproofing of building structures and air ducts, as well as technical insulation for piping, ductwork, equipment, reservoirs and large tanks.

All TECHNONICOL products are certified, known for their superior quality and conform to the relevant world standards.

All of the company's enterprises operate according to the environmentally-friendly waste-free production principle.

8 stonewool manufacturing plants

Over

15 mln m³ in annual product output – total manufacturing capacity of our plants The key to the dynamic development of our Mineral Insulation business is our highly-qualified staff, coupled with the use at our production facilities of cutting-edge technological solutions and equipment.

Operational geography

The company's production assets encompass 8 plants in Russia for the manufacture of stonewool-based heat-insulation materials, namely, in: Belgorod, Ryazan, Rostov-on-Don, Zainsk, Chelyabinsk, Yurga and Khabarovsk.

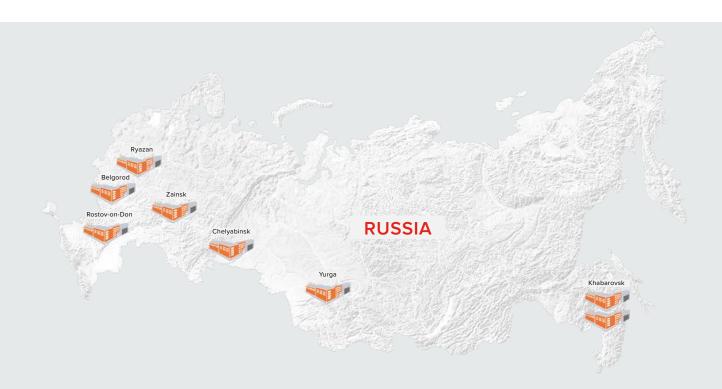
The geographical location of our plants lets us minimise transportation costs and optimise the logistics process.

Technological excellence – the key to ensuring competitiveness

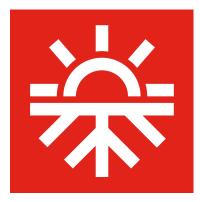
The popularity among consumers of TECHNONICOL stonewool materials is explained by their numerous technical and performance advantages, which are embedded in each product at the initial manufacturing stage.

All of our materials are made from igneous basaltic rock with the use of advanced high-tech equipment by the leading Western European manufacturers.

The production processes on the manufacturing line are fully automated, while strict quality control at all stages of production, from the inspection of raw components to the testing of finished products, ensures the consistently high quality of all of the materials that we produce.


Our ready-to-use products are packed in shrinkwrap, which safeguards the

integrity of the materials. Each product pallet is packed according to stretch-hood technology. This packing technology reduces both transportation and labour costs by increasing loading-and-shipping speed. But most importantly – this type of packing lets our customers store the material at outdoor storage or construction sites without detriment to their stressstrain properties.


TECHNONICOL doesn't just boast production capacity, but also the company's own Research Centre, where work is constantly underway to improve upon the already-impressive technical and performance qualities of our finished products.

The company continuously invests its time and resources into refining its production processes and modernising its manufacturing capacity. These efforts have resulted in a wide-ranging product line of stonewool-based insulation materials, which are characterised by their consistently superior quality and adherence to the requirements of both Russian and international standards.

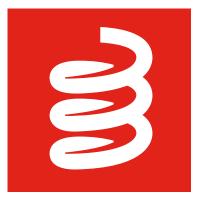
Thanks to its competitive price, uncompromising quality and wideranging performance advantages, noncombustible TECHNONICOL insulation has emerged as the preferred choice among consumers. You can gauge all of the advantages offered by non-combustible TECHNONICOL insulation even today simply by contacting our representatives.

Properties of technical insulation and fireproofing by TECHNONICOL

EFFICIENT HEAT INSULATION

TECHNONICOL stonewool is a highly-efficient heat-insulation material.

High heat-transfer resistance is achieved through the retention of a large quantity of static air inside the insulation, thanks to the tightly-interwoven microfibres of the mineral wool. For this reason, materials made from stonewool efficiently protect pipes from freezing while minimising heat loss during energy transmission. In this way, energy costs are minimised as the efficiency of various heating equipment improves.



FIRE SAFETY

The primary raw material used in the production of TECHNONICOL stonewool is gabbro-basaltic igneous rock. As a result, all TECHNONICOL products are noncombustible. The melting point of the fibres exceeds 1,000 °C, which allows stonewool products to be used within a wide range of operating temperatures.

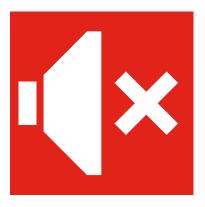
Fireproofing materials create a heat-insulating barrier on the surface of structures and shield them from the destructive effects of high temperatures during a fire without combusting, thereby eliminating damage to the structure, its strength and other properties and preserving the load-bearing capacity and overall integrity of enclosing structures. This results in more time for the evacuation of people and retrieval of documents and property during a fire.

An important factor in the choice of heat insulation is the consideration that, under the impact of high temperatures, TECHNONICOL insulation doesn't emit harmful substances or toxins.

HIGH YIELD STRENGTH

The outstanding resistance of TECHNONICOL materials to mechanical loads is provided by the unique properties of the fibre and the structure of the stonewool. These parameters were established individually for each product in the TECHNONICOL line, based on the heat insulation's scope of application.

Depending on the structure, the material absorbs varying loads in terms of force, direction and duration of impact. In order to maintain its shape, thickness and reliable adherence to structures, heat-insulation materials must boast a high yield strength. This property, in turn, is necessary for the reliable and long-term insulation of a structure without loss of quality as time passes.


Stonewool is good at withstanding the thermal expansion of pipes and equipment, as well as the vibration of air ducts and microvibrations of pressurised equipment and pipes.

High heat-transfer resistance thanks to air retention inside the insulation

4

Fibre melting point – over 1,000 °C

High yield strength

GOOD SOUND ABSORPTION

The fibrous structure of products made from TECHNONICOL stonewool provides for the material's outstanding acoustic and soundproofing properties. TECHNONICOL products boast a high sound-absorption coefficient at a wide range of frequencies, thereby facilitating a reduction in noise levels when used in various types of structures: pipes, air ducts and equipment across an array of different industries.

WATER REPELLENCY

All stonewool-based heat-insulation materials by TECHNONICOL have been treated with hydrophobic agents, giving the insulation its water-repelling properties.

The presence of moisture in insulation has a negative impact on its heat-insulating properties and service life. In case of getting soaked through, insulation requires expensive and timeconsuming remediation efforts, most of which end in replacement of the heat-insulation material in its entirety.

In cases where moisture comes into contact with the insulation of hot-running equipment or pipes, it naturally evaporates.

VAPOUR PERMEABILITY

Materials based on TECHNONICOL stonewool boast a high degree of vapour permeability and do not retain the moisture emanating from adjacent premises in the form of the vapour released in the course of everyday human activity, virtually always remaining dry.

For cooling equipment/pipes, we've developed special materials coated with reinforced aluminium foil, which creates a vapour barrier.

High sound-absorption coefficients allow for the effective reduction of noise levels

Superior resilience to temporary moisture impacts

Good vapour permeability

BIO-RESISTANCE

TECHNONICOL products fully meet the relevant bio-resistance criteria, as is evidenced not only by numerous tests and experiments, but also by field studies.

TECHNONICOL stonewoolbased materials are capable of withstanding the impacts of a range of different macro- and microorganisms: the material is not life-sustaining for bacteria, mould or fungi, nor does it represent an attractive living environment for insects and rodents.

CHEMICAL RESISTANCE

TECHNONICOL products are made from basaltic rock. The natural minerals in this group are distinctive for their high level of chemical resistance to the impacts of various substances: lubricants, solvents and paints, as well as acidic and alkaline environments.

TECHNONICOL materials based on basaltic igneous rock can confidently be used in conjunction with all types of building materials, and can also be used for the filtration of corrosives in a number of different chemical industries.

ENERGY EFFICIENCY

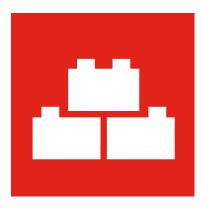
TECHNONICOL develops, manufactures and markets construction materials and systems that make it possible to minimise heat loss and enhance the thermal insulation of pipes and equipment, while also improving upon the fireresistance of building structures. By integrating energy-efficient technologies and materials, we achieve a significant reduction in heat loss through the enclosing structures of buildings.

TECHNONICOL conducts research on the energy efficiency of heat-insulation and fireproofing systems using stonewoolbased technical insulation and fireproofing materials. The use of such systems and materials makes it possible to dramatically reduce the energy consumption of heating networks and increase equipment efficiency while also significantly reducing fireresistance.

High resistance to the impacts of microorganisms and rodents

6

Chemically neutral in relation to other building materials


Facilitates energy savings

BASALT-BASED

The primary raw material used in the production of stonewool heat-insulation slabs is gabbrobasaltic rock – igneous formations resulting from volcanic eruptions. This unique raw material is natural, environmentally-friendly and safe.

To obtain high-quality fibre, batch composition is carefully screened at the plant.

EASY INSTALLATION

Stonewool slabs are easy to cut using readily-available tools: a knife or fine-toothed saw. It's easy to make cutouts of the required dimensions and install them in the existing structure, and just as easy to ensure the quality control of the installation process.

DIMENSIONAL STABILITY

Stonewool slabs are manufactured with guaranteedstable geometric dimensions thanks to the automation and mechanisation of the production process.

Precise and stable geometric dimensions allow the slabs to be installed tightly against one another or to the existing framework of a building structure, depending on the installation specifications.

Made primarily from a molten mixture of igneous rock

Easy to cut and install

Guaranteed stability of geometric dimensions

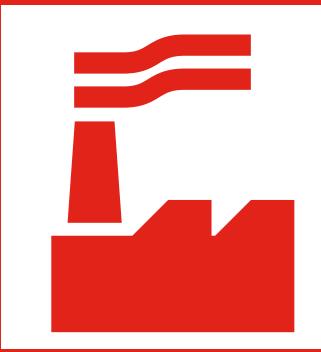
Advantages of technical insulation and fireproofing by TECHNONICOL

ENVIRONMENTAL FRIENDLINESS

Caring for the environment in the production of our materials is a top business priority for TECHNONICOL, as well as another opportunity for innovation. As one of Russia's leaders in the production of stonewool, TECHNONICOL is constantly refining its products and services, integrating cuttingedge environmental-conservation equipment and technologies. All of the products developed and manufactured by the company meet the applicable international sanitary and ecological standards, are non-toxic to human health and the environment, have undergone the full cycle of both compulsory and voluntary certification and have been cleared for use in Russia and abroad.

DURABILITY

The durability of building structures depends on a number of factors: correct calculations at the design and structuralengineering stage, expert assembly-and-installation work, observance of the relevant transportation and storage conditions for the corresponding building materials, and so on.


Years of experience, modern equipment, the constant refinement of our technologies and the practical integration of advancements developed at our own Research and Technology Centre let TECHNONICOL manufacture consistently highquality stonewool products that maintain their performance claims throughout the entire service life of the respective facilities and equipment. The safety and quality of TECHNONICOL stonewool products are confirmed by all of the required certificates, studies and test reports.

COMPREHENSIVE SOLUTIONS

Technical insulation and fireproofing materials by TECH-NONICOL provide for the reliable insulation of pipes, equipment and building structures in even the most adverse conditions and are capable of withstanding both the impacts of high temperatures as well as constant temperature fluctuations, accompanied by the thermal expansion of the insulated facility or by vibrations.

8

Technical insulation

WIRED MAT (MP) / TECHNO MAT / TECHNO MAT LAMEL / TECHNO WIRED MAT / TECHNO CYLINDER / TECHNO SLAB T / MINERAL WOOL (MW)

Wired Mat (MP)

GOST 21880-2022

Non-combustibility

Wide range of operating temperatures

Versatility

Application

- Heat-insulation and soundproofing of the enclosing structures of residential, public and commercial buildings and facilities, for industrial, technical and power equipment, reservoirs for the storage of hot and cold water, oil and petroleum products, chemical piping in all industrial sectors at an insulated surface temperature of from -180 °C to +700 °C.

Description

- Heat-insulation material made from basaltic stonewool and a low-phenol binder with a water-repelling admixture. Made uncoated or with facing (backing) made from:
- metal mesh (marked MM);
- fibreglass cloth (marked FC);
- non-woven fibreglass canvass (marked NFC);
- aluminium foil (marked F).

Geometric dimensions

Length: 2,000 mm Width: 1,200 mm Thickness (in 10 mm increments): 50-120 mm

Stress-strain properties

		WM 60	WM 80	WM 100	WM 125
Density, kg/m ³		50-70	70–90	90–110	110–130
Compressibility, % (max)		45	35	25	20
Elasticity, % (min)		_	_	_	_
Combustibility, degree		NC*	NC*	NC*	NC*
	λ_{10}	0.038	0.035	0.034	0.032
	λ_{25}	0.040	0.037	0.038	0.039
	λ ₁₀₀	_	0.047	0.044	0.042
Thermal conductivity, W/m•°C	$\lambda_{_{200}}$	_	0.068	0.061	0.055
(max)	$\lambda_{_{300}}$	-	0.101	0.082	0.072
	$\lambda_{_{400}}$	-	0.138	0.114	0.100
	$\lambda_{_{500}}$	-	0.183	0.153	0.129
	λ_{600}	-	0.236	0.201	0.161
Organic matter content, % (max)		1.5	2.0	2.0	2.0
Moisture by weight, % (max)		1.0	1.0	1.0	1.0
* C1 for NFC facing					

C1 for NFC facing

Logistical parameters

Length, mm	2,000	2,000	2,000	2,000
Width, mm	1,200	1,200	1,200	1,200
Thickness, mm	50	60	80	100
Mats, pcs	1	1	1	1
Quantity per roll, m ²	2.4	2.4	2.4	2.4
Quantity per roll, m ³	0.120	0.144	0.192	2.400
Load rate (t.f.), volume, 90 m ³	90.00	89.28	90.24	90.00

Completed projects

Vaninsky Refinery, Vanino, Khabarovsk Region

Podsolnukhi Residential Complex, Blagoveshchensk

10

TECHNO Mat

STO 72746455-3.2.10-2021

Non-combustibility

Wide range of operating temperatures

Versatility

Application

- Heat-insulation and soundproofing of pipes, air ducts, gas flues, electric filters, reservoirs, boilers, process and power equipment, flat vertical and horizontal surfaces at various industrial facilities, engineering system equipment, heating networks, pipelines and industrial pipes at an insulated surface temperature of up to +500 °C.

Description

- Non-combustible heat-insulating and soundproofing mat made from igneous-basaltic stonewool. Made uncoated or with facing (backing) made from reinforced aluminium foil (marked AF).

КНОНИКОЛ ТЕХНОНИКОЛ

Geometric dimensions

Length: 3,500; 4,000; 4,500 mm Width: 1,200 mm Thickness (in 10 mm increments): 50-100 mm

Stress-strain properties

TI	ECHNO Mat 40
	40 (±8)
	0.5
	NC*
λ_{25}	0.038
λ_{50}	0.044
λ ₁₂₅	0.057
λ ₃₀₀	0.113
$\lambda_{_{400}}$	0.168
λ_{500}	0.254
	1.5
	$λ_{25}$ $λ_{50}$ $λ_{125}$ $λ_{300}$ $λ_{400}$ $λ_{500}$

* C1 - coated with reinforced aluminium foil

Logistical parameters

Length, mm	3,500	4,500	4,000	3,500
Width, mm	1,200	1,200	1,200	1,200
Thickness, mm	50	60	80	100
Mats, pcs	2	1	1	1
Quantity per roll, m ²	8.4	5.4	4.8	4.2
Quantity per roll, m ³	0.420	0.324	0.384	0.420
Load rate (t.f.), volume, 92 m ³	385	385	385	385

LUKOIL-Nizhnegorodnefteorgsintez, Kstovo. Nizhny Novgorod Region

EuroChem Gremyachesky MPP,

Region

Gremyachaya Railway Station, Volgograd

CATALOGUE / TECHNICAL INSULATION 11

Completed projects

TECHNO Mat Lamel

STO 72746455-3.2.10-2021

High compressive strength

High yield strength during installation and service

Decorative appearance

Application

 Heat- and vapour-insulation of air ducts, ventilation equipment, reservoirs and pipes with a diameter of over 230 mm and flat surfaces. Suitable for use at an insulated-surface temperature of up to +250 °C (on the stonewool-facing side).

Description

— Flame-retardant heat-insulating and soundproofing mat made of stonewool strips (lamina) elongated to 90° and glued to aluminium foil. The result is a product that boasts an elevated compressive strength compared to traditional mats with less deformation during installation. In its standard format, the mat is coated with reinforced aluminium foil.

Geometric dimensions

Length: 2,600; 3,000; 3,400; 4,000; 5,000; 6,000; 8,000 mm Width: 1,200 mm Thickness (in 10 mm increments): 30–100 mm

Stress-strain properties

		TECHNO Mat Lamel 35	TECHNO Mat Lamel 50
Density, kg/m ³		35 (±8)	50 (±5)
Combustibility, degree		C1	C1
	λ_{25}	0.040	0.038
	λ_{50}	0.045	0.043
	λ ₁₂₅	0.061	0.058
Thermal conductivity, W/m•°C (max)	λ_{300}	0.129	0.120
	λ_{400}	0.201	0.180
	$\lambda_{_{500}}$	0.303	0.269
	λ_{550}	0.383	0.334

Completed projects

Europolis Shopping Mall, St. Petersburg

Logistical parameters

Length, mm	8,000	6,000	5,000	4,000	3,000	2,600
Width, mm	1,200	1,200	1,200	1,200	1,200	1,200
Thickness, mm	30	40	50	60	80	100
Mats, pcs	1	1	1	1	1	1
Quantity per roll, m ²	9,600	7,200	6,000	4,800	3,600	3,120
Quantity per roll, m ³	0.288	0.288	0.300	0.288	0.288	0.312
Load rate (t. f.), volume, 92 m ³	240	240	230	240	240	220

St. Petersburg Stadium, St. Petersburg

TECHNO Wired Mat

STO 72746455-3.2.10-2021

Resistant to high temperatures

High degree of fire-resistance

Resistant to temperature fluctuations, vibrations and harsh chemical environments

Application

- Heat-insulation, soundproofing and fireproofing of air ducts, insulation of hot-running equipment, pipes, steam conduits, gas flues, electric filters and other process equipment.
- Suitable for use at an insulated-surface temperature of up to +650 °C.
- Wired mat GP F is certified as a fireproofing coating for air ducts.

Description

Completed projects

— Non-combustible heat-insulating and soundproofing wired mat made from igneous-basaltic stonewool. The mat is faced (backed) on one side with zinc-plated mesh (marked ZM), stainless-steel mesh (marked SS) or galvanized mesh (marked GM) and stitched with metal wire. The mat is produced with one-sided facing (backing) in either reinforced (marked AF) or unreinforced (marked F) foil.

Geometric dimensions

Length: 2,400 mm Width: 1,200 mm Thickness:

TECHNO Wired Mat 50 (in 10 mm increments): 50–100 TECHNO Wired Mat 80 (in 10 mm increments): 30–100 TECHNO Wired Mat 100 (in 10 mm increments): 30–100 TECHNO Wired Mat 120 (in 10 mm increments): 30–100

Stress-strain properties

		TECHNO Wired Mat 50	TECHNO Wired Mat 80	TECHNO Wired Mat 100	TECHNO Wired Mat 120
Density, kg/m ³		50 (±8)	80 (±8)	100 (±10)	120 (±12)
Combustibility, degree		NC*	NC*	NC*	NC*
	λ ₂₅	0.036	0.034	0.034	0.036
	$\lambda_{_{50}}$	_	0.038	0.038	0.039
	λ ₁₂₅	0.055	0.050	0.045	0.045
Thermal conductivity, W/m•°C (max)	$\lambda_{_{300}}$	0.114	0.093	0.079	0.075
, <i>,</i> ,	$\lambda_{_{400}}$		0.130	0.110	0.104
	$\lambda_{_{500}}$	_	0.178	0.154	0.137
	λ_{600}		0.260	0.226	0.207

* C1 – coated with reinforced aluminium foil

Logistical parameters

Length, mm	2,400	2,400	2,400	2,400	2,400	2,400
Width, mm	1,200	1,200	1,200	1,200	1,200	1,200
Thickness, mm	30	40	50	60	80	100
Mats, pcs	1	1	1	1	1	1
Quantity per roll, m ²	2.880	2.880	2.880	2.880	2.880	2.880
Quantity per roll, m ³	0.086	0.115	0.144	0.172	0.230	0.288
Load rate (t.f.), volume, 92 m ³	1,050	780	630	525	390	315

Talan Towers Mixed-Use Complex, Astana, Kazakhstan

Planeta Shopping Centre,

Novokuznetsk

TECHNO Cylinder

STO 72746455-3.2.10-2021

Quick installation

No clumping

Superior heat-saving efficiency

Vapour-insulating function

Application

- Heat insulation of circular process pipes and air ducts.
- Vapour insulation of cooling pipes. At temperatures of up to +250 °C, can be used without support brackets/ ringseasing the insulation's outer coating.
- Suitable for use at an insulated-surface temperature of up to +650 °C.

Description

— Non-combustible heat-insulating and soundproofing hollow cylinder made from igneous-basaltic stonewool. The cylinders feature a continuous longitudinal slit on one side for ease of installation on pipes. Can be produced uncoated or with facing (backing) made of unreinforced (marked F) or reinforced (marked AF) aluminium foil. Depending on the inner diameter and thickness of the wall, can be fabricated in the form of semicylinders and segments.

Rostov Arena,

Rostov-on-Don

Volgograd Arena, Volgograd

Geometric dimensions

Length: 1,000*; 1,200 mm Inner diameter: 18–324 mm Thickness (in 10 mm increments): 20–120 mm

Stress-strain properties

		TECHNO Cylinder 80	TECHNO Cylinder 120
Density, kg/m ³		80 (±8)	120 (±15)
Moisture by weight, % (max)		0.5	0.5
Combustibility, degree		NC*	NC*
	λ ₂₅	0.038	0.043
	λ_{50}	0.039	0.037
Thermal conductivity W/m °C (may)	λ_{100}	0.049	0.044
Thermal conductivity, W/m•°C (max)	λ ₂₀₀	0.076	0.064
	λ ₃₀₀	0.118	0.094
	λ_{350}	0.150	0.113

* C1 – coated with reinforced aluminium foil

Logistical parameters

Cylinder dimensions (inner diameter × wall thickness × length), mm	18 × 20 × 1,200	159 × 20 × 1,200	42 × 50 × 1,200	219 × 50 × 1,200	32 × 90 × 1,200	108 × 90 × 1,200
Number of cylinders in a box 600 × 600 × 1,205 mm (pcs)	97	9	16	23	6	9
Number of cylinders in a box 600 × 600 × 1,205 mm (m)	116.40	10.80	19.20	6.90	7.20	5.40

* TECHNO 1,000 mm-long cylinder is only produced in Yurga and Khabarovsk.

Completed projects

Mineral Wool (MW)

GOST 4640-2011

Non-combustibility

No binding agents

Resistant to high temperatures

Application

 Mineral wool can be used as a heat-insulating material in construction and industry for the insulation of surfaces with a temperature of from –180 °C to +700 °C, and also as a material used in the fabrication of soundproofing and sound-dampening products.

Description

— Mineral wool is non-combustible heat-insulating and soundproofing material derived from a molten alloy of gabbro-basalt igneous rock and related analogues, sedimentary rock, volcanic cinder, smelter slag, industrial silicate waste and co-occurring mixtures without the addition of a binding agent, produced in the form of briquettes.

Geometric dimensions

Length: 1,000 mm Width: 1,000 mm Thickness: 800 mm

Stress-strain properties

	MW-70
	NC
λ ₁₀	0.036
λ ₂₅	0.038
λ ₁₂₅	0.050
λ ₃₀₀	0.120
	1.0
	λ ₂₅ λ ₁₂₅

Completed projects

Talnakhskaya Processing Plant, Norilsk, Krasnoyarsk Region

Logistical parameters

	MW-70
Length, mm	1,000
Width, mm	1,000
Thickness, mm	800
Quantity per palette, briquettes	3
Weight, kg	296

TECHNO Slab T

STO 72746455-3.2.10-2021

Superior heat-saving efficiency

Resistant to high-temperature impacts

Non-shrink

Application

 Heat insulation of large tanks and reservoirs, as well as air ducts, gas flues, electric filters, boilers, technological equipment, flat vertical and horizontal surfaces, furnaces and utility equipment. Suitable for use at an insulated-surface temperature of up to +700 °C.

Description

Completed projects

 Non-combustible, water-repellent heat-insulating and soundproofing rigid slabs made from igneousbasaltic stonewool. Special high-temperature fibre is used in the production of the slab. Can be produced uncoated or with facing (backing) made of reinforced aluminium foil (marked AF) or glass-fibre mat (marked GFM).

Geometric dimensions

Length: 1,200; 2,400 mm Width: 600; 1,200 mm Thickness (in 10 mm increments): 50–100 mm

Stress-strain properties

		TECHNO Slab T 40	TECHNO Slab T 60	TECHNO Slab T 80
Density, kg/m ³		40 (±4)	60 (±6)	80 (±8)
Compressive strength at 10 % deformation, kPa (min)		_	-	10
Moisture by weight, % (max)		0.5	0.5	0.5
Combustibility, degree		NC*	NC*	NC*
	λ ₂₅	0.038	0.036	0.035
	λ ₅₀	0.043	0.040	0.040
	λ ₁₂₅	0.057	0.053	0.050
	λ ₂₀₀	-	0.071	0.064
Thermal conductivity, W/m•°C	λ ₃₀₀	0.116	0.109	0.086
(max)	$\lambda_{_{400}}$	0.168	0.151	0.124
	λ_{500}	0.262	0.217	0.174
	λ_{550}	0.316	_	_
	λ ₆₀₀	-	0.323	_
	λ ₆₅₀	-	-	0.282

Stress-strain properties

		TECHNO Slab T 100	TECHNO Slab T 120	TECHNO Slab T 150
Density, kg/m ³		100 (±10)	120 (±15)	150 (±15)
Compressive strength at 10 % deformation, kPa (min)		15	20	20
Moisture by weight, % (max)		0.5	0.5	0.5
Combustibility, degree		NC*	NC*	NC*
	λ ₂₅	0.036	0.037	0.039
	λ ₅₀	-	0.040	0.043
	λ ₁₂₅	0.051	0.049	0.051
Thermal conductivity, W/m•°C	λ_200	-	-	0.060
(max)	λ ₃₀₀	0.081	0.079	0.070
	$\lambda_{_{400}}$	-	0.103	0.095
	λ_{500}	-	0.139	0.121
	λ_{680}	-	0.219	0.182

* C1 – coated with reinforced aluminium foil

Logistical parameters

	TECHNO Slab T 40	TECHNO Slab T 80	TECHNO Slab T 120
Length, mm	1,200	1,200	1,200
Width, mm	600	600	600
Thickness, mm	100	100	100
Slabs, pcs	6	4	3
Quantity per pack, m ²	4.320	2.880	2.160
Quantity per pack, m ³	0.432	0.288	0.216
Number of slabs per palette, pcs	32	24	16
Quantity per palette, m ³	6.912	6.912	6.912
Load rate (t.f.), volume, 92 m ³	76.032	76.032	76.032
Load rate (t.f.), volume, 120 m ³	82.944	82.944	82.944

ZapSib-2 (ZapSibNeftekhim), Tobolsk, Tyumen Region

EVRAZ West-Siberian Metal Plant, Novokuznetsk

CATALOGUE / TECHNICAL INSULATION

Fireproofing

TECHNO SLAB OZM / TECHNO SLAB OZB / TECHNO SLAB OZD

TECHNO Slab OZM

STO 72746455-3.2.10-2021

Elevated degree of fire-resistance

Moisture resistance

Doesn't require the application of additional protective coatings

- Increasing the fire-resistance of load-bearing metal structures from a maximum fire-resistance rating of 30 minutes to 240 minutes and providing corrugated sheeting with a maximum fire-resistance rating of up to 30 minutes.
- Certified as a fireproofing composition to ensure the fire-resistance of metal structures up to 240 minutes and corrugated sheeting up to 45 minutes.

Description

 Non-combustible, water-repellent, flame-retardant, heat-insulating and soundproofing slabs made from igneous-basaltic stonewool. Can be produced uncoated or with facing (backing) made of reinforced aluminium foil (marked AF) or glass-fibre mat (marked GFM).

Completed projects

Luzhniki Sports Arena, Moscow

Geometric dimensions

Length: 1,200; 2,400 mm Width: 600; 1,200 mm Thickness (in 10 mm increments): 30–140 mm

Stress-strain properties

		TECHNO Slab OZM
Density, kg/m³		160 (±15)
Compressive strength at 10 % deformation, kPa (min)		25
Moisture by weight, % (max)		0.5
Combustibility, degree		NC
	λ ₁₀	0.037
Thermal conductivity, W/m•°C (max)	λ ₂₅	0.039
	$\lambda_{_{40}}$	0.047

Logistical parameters

Length, mm	1,200	1,200	1,200	1,200	1,200
Width, mm	600	600	600	600	600
Thickness, mm	30	40	50	60	70
Quantity per pack, slabs (pcs)	6	5	4	4	3
Quantity per pack, m ²	4.320	3,600	2.880	2.880	2.160
Quantity per pack, m ³	0.129	0.144	0.144	0.172	0.151
Quantity per palette, pack (pcs)	52	48	48	40	44
Quantity per palette, m ³	6.739	6.912	6.912	6.912	6.652
Lorry load rate, volume, 92 m ³	73.131	76.032	76.032	76.032	73.180
Lorry load rate, volume, 120 m ³	80.870	82.944	82.944	82.944	79.833

VTB Arena, Moscow

TECHNO Slab OZB

STO 72746455-3.2.10-2021

Elevated degree of fire-resistance

Superior heat-saving efficiency

Resistant to high-temperature impacts

Year-round installation

Application

 Increasing the fire-resistance rating of reinforced-concrete structures to 240 minutes.

Description

 Non-combustible, water-repellent, heat-insulating and soundproofing slabs made from igneous-basaltic stonewool. Can be produced uncoated or with facing (backing) made of reinforced aluminium foil (marked AF) or glass-fibre mat (marked GFM).

Geometric dimensions

Length: 1,200; 2,400 mm Width: 600; 1,200 mm Thickness (in 10 mm increments): 40–200 mm

Stress-strain properties

		TECHNO Slab OZB 80	TECHNO Slab OZB 110
Density, kg/m ³		80 (±8)	110 (±11)
Compressive strength at 10 % deformation, kPa (min)		15	20
Moisture by weight, % (max)		0.5	0.5
Combustibility, degree		NC	NC
	λ ₁₀	0.035	0.036
Thermal conductivity, W/m•°C (max)	λ_{25}	0.037	0.038
	$\lambda_{_{40}}$	0.049	0.048

Fire-resistance indicators of the TN-FIREPROOFING Concrete system, minutes

40 mm		REI 240
50 mm	REI 180	

Completed projects

Galaktika Shopping Mall, Barnaul

Logistical parameters

Length, mm	1,200	1,200	1,200	1,200	1,200	1,200
Width, mm	600	600	600	600	600	600
Thickness, mm	50	60	80	100	150	200
Quantity per pack, slabs (pcs)	6	5	4	4	2	2
Quantity per pack, m ²	4.320	3,600	2.880	2.880	1.440	1.440
Quantity per pack, m ³	0.216	0.216	0.230	0.288	0.216	0.288
Quantity per palette, pack (pcs)	32	32	28	24	32	24
Quantity per palette, m ³	6.912	6.912	6.451	6.912	6.912	6.912
Lorry load rate, volume, 92 m ³	76.032	76.032	70.963	76.032	76.032	76.032
Lorry load rate, volume, 120 m³	82.944	82.944	77.414	82.944	82.944	82.944

Akademichesky Shopping Mall, Yekaterinburg

TECHNO Slab OZD

STO 72746455-3.2.10-2021

Resistant to high-temperature impacts

Application

 Fill for fire doors and gates with varying maximum fire-resistance ratings.

Description

 Non-combustible, water-repellent, heat-insulating and soundproofing slabs made from igneous-basaltic stonewool. Can be produced uncoated or with facing (backing) made of reinforced aluminium foil (marked AF) or glass-fibre mat (marked GFM).

Geometric dimensions

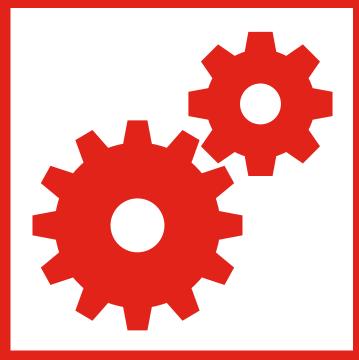
Length: 1,200; 2,400 mm Width: 600; 1,200 mm Thickness (in 10 mm increments): 40–160 mm

Stress-strain properties

	TECHNO Slab OZD 110	TECHNO Slab OZD 190
	110 (±10)	180 (±15)
	10	20
	0.5	0.5
	NC	NC
λ ₁₀	0.037	0.038
λ_{25}	0.040	0.042
$\lambda_{_{40}}$	0.048	0.047
	λ ₂₅	$\begin{array}{c} & & \\$

Completed projects

Poseidon Residential Complex, Sochi


Logistical parameters

1,200
1,200
50
96
138.24
6.912
1
6.912

Tapiola Residential Complex, St. Petersburg

Components*

CERESIT PLASTER-AND-ADHESIVE MIX / TERMOCLIP METAL ANCHOR AND FASTENER / TERMOCLIP WELDED METAL PIN AND WASHER / TERMOCLIP SELF-DRILLING SELF-TAPPING SELF-LOCKING SCREW AND STEEL WASHER / ALUMINIUM TAPE

* Not supplied by TECHNONICOL

Ceresit CT 190 plaster-and-adhesive mix

GOST R 54359-2017

Application

— For mineral-wool slab fastening

Stress-strain properties

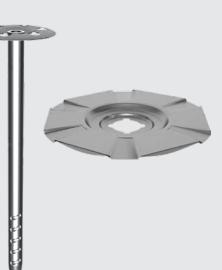
Bulk density of the dry mix, kg/dm ³	1.3 (±0.1)
Amount of batched water, I/25 kg of dry mix	6.5-6.8
Bulk density of the ready-to-use mix, \mbox{kg}/\mbox{dm}^3	1.5 ± 0.1
Mobility by cone immersion, CI, cm	9.0 ± 1.0
Consumption time, hours (min)	1.5
Application temperature, °C	from +5 to +30
Open time, minutes (min)	30
Compressive strength at 28 days, MPa (min)	8.0
Adhesion to concrete at 28 days, MPa (min)	0.7
Adhesion to mineral-wool slab at 3 days	varies by slab type
Adhesion to metal at 28 days, MPa (min)	0.45
Frost resistance of the hardened mixture, cycles (F100) (min)	100
Operating temperature, °C	from -50 to +70
Combustibility group	NC
Consumption rate of the dry mix in fastening the slab to the surface, \mbox{kg}/\mbox{m}^2	0.7–2.0

Completed projects

Moskva Shopping Mall, Stavropol

Note:

material consumption rate depends on the evenness of the base and the application method used in securing the slab $% \left({{\mathbf{x}}_{i}}\right) =\left({{\mathbf{x$


Packaging

	Ceresit CT 190 plaster-and- adhesive mix
Weight per 1 bag, kg	25
Number of bags per palette, pcs	36
Net/gross weight, kg	900/930

Cosmos Megacentre, Stavropol

WALL 4 metal disk anchor and TERMOCLIP fastener

Application

 Fastening of TECHNO Slab OZB to reinforcedconcrete constructions and concrete structures

Stress-strain properties

Wall 4 disk anchor

Anchor length, mm	80	110	140	170	200	250
Spacing, mm	50	50	50	50	50	50
Thickness of the fastened material, mm	30	60	90	120	150	200
Hole diameter, mm	8	8	8	8	8	8
Diameter of the disk element, mm	35	35	35	35	35	35
Recommended working drill length, mm	100	150	200	200	250	300
Anchor tear-out force from cor	ncrete, kN					1.4
Anchor tear-out force from b	rick, kN					1.2

Disk fastener

Diameter of the disk fastener, mm

Completed projects

Leroy Merlin Shopping Centre, Penza

Aquapolis Waterpark, Pskov 80

Metal welded pin CT/WP2 and washer PW2 TERMOCLIP

Application

 Intended for the fastening of fireproofing and heatinsulation materials to the metal structures of air ducts

Geometric dimensions

Pin length: 19; 25; 32; 42; 51; 63; 76; 89; 105; 114; 125; 140 mm Washer diameter: 30; 38 mm

Completed projects

Aura Shopping Mall, Yaroslavl

Riviera Shopping Mall, Moscow

Self-drilling self-tapping self-locking screw EDS-B 4.8 and steel washer TE 1/C TERMOCLIP

Application

 Fastening of TECHNO Slab OZM to the base of corrugated metal sheeting

Geometric dimensions

Screw length: 50; 60; 70; 80; 100; 120; 160; 200 mm Screw diameter: 4.8 mm Washer diameter: 50 mm

Stress-strain properties of the screw

Drill boring strength, mm	2.5
Drill rotation speed, RPM	1,500

Completed projects

Kalina Mall, Vladivostok

Yemelyanovo Airport, Krasnoyarsk

Aluminium tape, types AST (aluminium selfadhesive tape), ASIT (aluminium selfadhesive installation tape)

Application

 Sealing the joints of foiled heat-insulation materials for the purposes of vapour insulation

Geometric dimensions

Length: 50 m Width: 50/75/100 mm

Stress-strain properties

	Value by ty	pe		
Indicator	ASIT	ASIT-L (low temps)	AST	AST-R (reinforced)
Adhesion to stainless steel, g/cm (min)	500	500	500	500
Longitudinal tensile load, L/50 mm (min)	100	100	70	100
Adhesion temperature, °C	+5+50	-15+50	min –5	min –5

Completed projects

AERO PARK Shopping Mall, Bryansk

Chizhova Galleria, Voronezh

Training and design assistance

Training and design assistance

TECHNONICOL devotes a considerable amount of attention to training builders in innovative technologies and the particularities associated with the use of new materials.

Training Centres

The TECHNONICOL Construction Academy consolidates and studies the experience of thousands of the company's employees and clients, creates and transfers knowledge and expertise in the design and installation of insulation systems.

Training quality is ensured by 21 learning centres in Moscow, St. Petersburg, Yekaterinburg, Kazan, Ryazan, Novosibirsk, Ufa, Kumertau, Krasnodar, Khabarovsk, Cheboksary, Astana and Minsk.

Specialists in the construction field, employees at design firms and contractors, and the representatives of our commercial partners are all eligible to take part in the training.

A personal certificate is issued upon the completion of training.

Studying at TECHNONICOL Training Centres means:

- acquiring the skills needed to work with cutting-edge materials and equipment;
- increasing labour productivity and work quality;
- minimising customer and regulator complaints at the work delivery stage.

Webinars

One of the most effective training tools embraced by TECHNONICOL is the use of online seminars – webinars conducted by the company's national technical specialists in conjunction with TECHNONICOL Training Centres. This training format is convenient in that the student's physical location is of no consequence: you can get the information you need wherever there's an Internet connection. This results in significant time savings and virtually eliminates travel costs during the training process.

Our highly-qualified specialists will help you find the answers to your questions and elevate your level of professional expertise.

Installation Training Guides

A wealth of training tools lets you get the information you need from the most convenient source. Quality materials and professional expertise – the foundation of long-lasting knowledge.

TECHNONICOL'S range of training tools encompasses a series of videos and printed materials in the form of guides on the installation of various types of TECHNONICOL stonewool heat-insulation systems.

The videos and publications make it possible to study the main points associated with the installation of system materials, the required components and equipment, and the technical characteristics of the materials.

Each training tool is a professional visual guide whose study makes it possible to correctly choose the appropriate heat-insulation and/or fireproofing material for a particular building structure and avoid future problems associated with the incorrect installation of insulation.

academy.tn.ru

academy.tn.ru/obuchenie/online/webinar

tn.ru/catalogue/sistemy_ognezacshity

Calculators

The technical-insulation calculator makes it possible to select the appropriate technical-insulation thickness per CR 61.13330 and CR 60.13330 by 5 types:

- calculation by heat-flow density rates – heat insulation of equipment and pipes;
- calculation by preset temperature on the insulation surface;
- calculation aimed at preventing moisture condensation on the insulation surface;
- calculation for the insulation of twostack heating-system pipes;
- calculation for insulation intended to prevent water from freezing in pipes for a predetermined period of time.

The resulting detailed, step-bystep calculation can be printed out or saved in PDF format.

The fireproofing calculator makes it possible to calculate the required thickness of the fireproofing layer made from TECHNO Slab OZM. Calculations are made according to the instructions developed by FSI Scientific-Research Institute for Fire Safety at the RF Ministry of Emergency Situations, based on two main factors:

1) required maximum fire resistance of the structure;

2) effective metal thickness.

As a result, you get the minimum thickness of fireproofing slab needed to ensure the required maximum fire resistance.

ProjecTNavigator Interactive Building-System Directory

TECHNONICOL'S ProjecTNavigator Interactive Building-System Directory is a unique free service for architects and engineers in the form of an interactive programme featuring the detailed elaboration of turnkey solutions.

The programme has been designed to simplify the work entailed in choosing the right insulation system for equipment, pipes, air ducts and fireproofing systems for a range of different structures, as well as to speed up the time needed to work out the chosen technical solution.

Working with ProjecTNavigator, you'll be able to:

- quickly and easily choose the right insulation or fireproofing system for foundations, facades, floors, roofs, technical equipment, pipes and air ducts, depending on the functional and engineering specifics of the building being designed;
- find the required information about the materials used in TECHNONICOL building systems – their weight, thickness, consumption rate and other specifications;
- get information on the installation specifications of the structures being designed, examine blueprints of interest;
- make the required thermotechnical design, select the appropriate layer thickness of the insulation system.

International standards

At all TECHNONICOL stonewool production plants, the quality management system satisfies the requirements of international standard ISO 9001:2015, as is evidenced by the consistently-high level of quality of our manufactured products.

Russian regulations and standards

All TECHNONICOL stonewool products are certified. Their properties, safety and characteristics meet the latest requirements of Russian standards and regulations.

Conformance with technical regulations. "Rosizol" Quality Seal

Established in 2002, the Association of Russian Producers of Modern Mineral Insulation "Rosizol", whose membership includes TECHNONICOL, has developed the "Rosizol" Quality Seal. The presence of the seal confirms and guarantees that the material conforms to the most stringent quality standards.

nav.tn.ru

Application of technical-insulation and fireproofing materials by TECHNONICOL

		Wired Mat (MP)	TECHNO Mat Lamel 35	TECHNO Mat Lamel 50	TECHNO Wired Mat 50	TECHNO Wired Mat 80	TECHNO Wired Mat 100
Air ducts							
Heat insulation	rectangular						
of hot-running air ducts	circular						
Vapour-insulation	rectangular						
of cold-running air ducts	circular						
Pipes							
	t < 250 °C						
Pipes with a diameter of up to 219 mm	250 °C < t < 640 °C			•••••		•••••	•••••
0 219 1111	640 °C < t °C	•••••		•••••			•••••
••••••	t < 250 °C			•••••	•••••		
Pipes with a diameter of	250 °C < t < 640 °C						
from 219 to 324 mm	640 °C < t °C			•••••			
	t < 250 °C						
Wide-diameter pipes >	•••••			•••••			
324 mm	250 °C < t < 640 °C			••••••			••••••
	640 °C < t °C			•••••			
nsulation from condensate							
Soundproofing							
Reservoirs, boilers, furnaces	and equipment						
Boilers and reservoirs	t < 250 °C						
	t > 250 °C						
Boilers	••••••			•••••			
-lat surfaces	•••••••••••••••••••••••••••••••••••••••	•••••		•••••	•••••	•••••	•••••
Cast-iron chimneys	••••••	•••••		••••••	•••••		••••••
Steel smokestacks	••••••	•••••		•••••			•••••
Equipment and pipes contai	ning strong oxidizing			•••••		•••••	•••••
agents (liquid oxygen)							
Fireproofing							
Fireproofing of metal structu	res			••••••	•••••		
Fireproofing of concrete stru	ictures		••••••	•••••	•••••		
Fireproofing of air ducts							
	heeting				·····		
-ireproofing of corrugated s							
Fireproofing of fire doors							
Fireproofing of fire doors		••••••	250	250	570	640	650
Application temperature, °C			250	250	570	640	650
Fireproofing of fire doors Application temperature, °C Use of	the material prohibited	•••••		250	570	640	650
Fireproofing of fire doors Application temperature, °C Use of Use of	the material prohibited the material permissib the material recomme	le yet not exped		250	570	640	650

Stress-strain properties of insulation materials

				Fireproofing		
Indicator,		Concrete		Metal	Doors and gates	
unit of measurement		TECHNO Slab OZB 80	TECHNO Slab OZB 110	TECHNO Slab OZB	TECHNO Slab OZB 110	TECHNO Slab OZB 190
Density, kg/m³		80 (±8)	110 (±11)	160 (±15)	110 (±10)	180 (±15)
	λ ₁₀	0.035	0.036	0.037	0.037	0.038
	λ_{25}	0.037	0.038	0.039	0.040	0.042
	$\lambda_{_{40}}$	0.049	0.048	0.047	0.048	0.047
	λ ₅₀	_	_	_	_	_
	λ ₁₀₀	-	-	-	-	-
	λ_{125}	-	-	-	-	-
Thermal conductivity, W/m•°C (max)	λ_{200}	-	-	-	-	-
	$\lambda_{_{300}}$	-	-	-	-	-
	λ_{350}	-	-	-	-	-
	$\lambda_{_{400}}$	-	-	-	-	-
	λ_{500}	-	-	-	-	-
	λ_{550}	-	-	-	-	-
	$\lambda_{_{600}}$	-	-	-	-	-
	λ_{680}	-	-	-	-	-
Compressibility, % (max)		-	-	-	-	-
Elasticity, % (min)		-	-	-	-	-
Compressive strength at 10 % deformation, kPa (min)		15	20	25	10	20
Moisture by weight, % (max)		0.5	0.5	0.5	0.5	0.5
Organic matter content, % (max)		3.0	3.0	3.0	3.0	3.0
Combustibility, degree		NC	NC	NC	NC	NC
Length, mm		1,200; 2,400	1,200; 2,400	1,200; 2,400	1,200; 2,400	1,200; 2,400
Width, mm		600; 1,200	600; 1,200	600; 1,200	600; 1,200	600; 1,200
Thickness, mm		50–200	50–200	30–70	40–160	40–160

 * C1 – coated with reinforced aluminium foil

								Tech	nical insı	Ilation									
Wired N	Иat			TECHN Lamel	O Mat	TECHN	O Slab T					TECH- NO Mat	TECHN	IO Wired	Mat		Mine- ral Wool	TECHN Cylinde	
MP 50	MP 75	MP 100	MP 125	35	50	40	60	80	100	120	150	40	50	80	100	120	MW- 70	80	120
35–50	50–75	75– 100	100– 125	35 (±8)	50 (±5)	40 (±4)	60 (±6)	80 (±8)	100 (±10)	120 (±15)	150 (±15)	40 (±8)	50 (±8)	80 (±8)	100 (±10)	120 (±12)	70	80 (±8)	120 (±15)
0.038	0.035	0.034	0.032	-	-	-	-	-	-	-	-	-	-	-	-	-	0.036	-	-
0.040	0.037	0.038	0.039	0.040	0.038	0.038	0.036	0.035	0.036	0.037	0.039	0.038	0.036	0.034	0.034	0.036	0.038	0.038	0.043
-	_	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	_	_
_	-	-	-	0.045	0.043	0.043	0.040	0.040	-	0.040	0.043	0.044	-	0.038	0.038	0.039	-	0.039	0.037
-	0.047	0.044	0.042	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.049	0.044
-	0.052	0.050	0.046	0.061	0.058	0.057	0.053	0.050	0.051	0.049	0.051	0.057	0.055	0.050	0.045	0.045	0.050	-	-
-	0.068	0.061	0.055	-	-	-	0.071	0.064	-	-	0.060	-	-	-	-	-	-	0.076	0.064
-	0.101	0.082	0.072	0.129	0.120	0.116	0.109	0.086	0.081	0.079	0.070	0.113	0.114	0.093	0.079	0.075	0.120	0.118	0.094
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.15	0.113
-	0.138	0.114	0.100	0.201	0.180	0.168	0.151	0.124	_	0.103	0.095	0.168	-	0.130	0.110	0.104	-	-	-
-	0.183	0.153	0.129	0.303	0.269	0.262	0.217	0.174	-	0.139	0.121	0.254	-	0.178	0.154	0.137	-	-	-
-	-	-	-	0.383	0.334	-	-	-	-	-	-	-	-	-	-	_	-	-	-
-	0.236	0.201	0.161	-	-	0.316	-	-	-	0.219	-	-	-	0.260	0.226	0.207	-	-	-
-	-	-	-	-	-	-	0.323	0.282	-	-	0.182	-	-	-	-	-	-	-	-
45	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
85	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	_	-	-	-
-	-	-	-	-	-	-	-	10	15	20	20	-	-	-	-	-	-	-	-
1.0	1.0	1.0	1.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	1.0	0.5	0.5
1.5	2.0	2.0	2.0	2.5	2.5	2.5	2.5	3.0	3.0	3.0	3.0	1.5	1.5	2.0	2.0	2.0	0	4.5	3.5
NC	NC	NC	NC	C1*	C1*	NC*	NC*	NC*	NC*	NC*	NC	NC*	NC*						
2,000	2,000	2,000	2,000	2,800 3,000; 3,400; 4,000; 5,000; 6,000;	3,400;	1,200; 2,400	1,200; 2,400	1,200; 2,400	1,200; 2,400	1,200; 2,400	1,200; 2,400	3,000; 3,500; 4,000; 4,500; 5,000	2,400; 4,800	2,400; 4,800	2,400; 4,800	2,400; 4,800	1,000	1,000; 1,200	1,000; 1,200
1,200	1,200	1,200	1,200	1,200	1,200	600; 1,200	600; 1,200	600; 1,200	600; 1,200	600; 1,200	600; 1,200	1,200	1,200	1,200	1,200	1,200	1,000	Inner di mm, 18-	iameter, –324
50– 120	50– 100	50– 100	50– 100	30– 100	30– 100	50– 100	30– 100	30– 100	30– 100	30– 100	800	20– 120	20– 120						

Recommendations

Design and installation

In the Russian Federation, the design and installation of technical insulation must comply with CR 61.13330.2012 – heat insulation of equipment and pipes.

Safe temperature at the surface of the insulation

In case of hot-running pipes, according to CR 61.13330.2012, the layer of insulation must ensure an insulation surface temperature of:

Indoors and for equipment and pipes containing substances with a temperature of:

— over 500 °C – 55 °C;

- from 150 to 500 °C 45 °C;
- 150 °C and below 40 °C.
- Outdoors:

in case of a metal covering layer – 55 °C;

- in case of other covering layers – 60 $^{\circ}$ C.

In case of cold-running pipes, it's essential to provide for an additional layer of vapour insulation or to use materials coated with reinforced aluminium foil.

Covering layer and insulation durability

According to the same CR 61.13330.2012, in case of outdoor pipes, an additional protective covering layer must always be used. A protective covering layer entails the use of support elements to ease the load: support brackets or rings.

When using TECHNO Cylinders to insulate pipes running at a temperature of up to +250 °C, it is permissible to forego the use of support brackets/rings, insofar as the insulation is self-supporting. Support brackets must be used at temperatures of over +250 °C.

In cases where the equipment/pipe being insulated is indoors, an additional protective covering layer need not be used – provided the insulation is reliably shielded from physical impacts.

Insulation installation

Installation must be performed in such a way so as to avoid moisture coming into contact with the insulation to the greatest extent possible.

Outdoor installation during rain, snow, hail and other inclement weather conditions is prohibited. This could result in damage to the insulation.

Insulation storage

Insulation must be stored in enclosed, dry storage areas. Keep away from moisture!

Durability

The durability of building structures depends on a number of factors, such as correct calculations at the design and structural-engineering stage, expert assembly-andinstallation work, observance of the relevant transportation and storage conditions for the corresponding building materials, and so on.

Years of experience, modern equipment, the constant refinement of emerging technologies and the advancements developed at our own Research and Technology Centre let TECHNONICOL manufacture consistently high-quality stonewool products that maintain their performance claims throughout the entire service life of the respective buildings and structures. The safety and quality of TECHNONICOL stonewool products have been confirmed by all of the required documents, including a Technical Approval issued by the RF Ministry of Construction, Housing and Public Utilities.

For notes

For notes

WWW.TN.RU

8 800 600 05 65 PROFESSIONAL CONSULTING